紫荆棘鸟

注册日期:2008-05-03
访问总量:2941358次

menu网络日志正文menu

芝诺悖论解决了吗?(ZT,by 应行仁)


发表时间:+-

注:原文标题是“阿基里斯与乌龟的悖论解决了吗?”,URL: 阿基里斯与乌龟的悖论解决了吗?。这里将原标题截短了点,因为万维显示标题时有字数限制。芝诺诡辩(芝诺悖论)相信大家都知道,简单地说可以这样描述:假设阿奇里斯速度是乌龟的10倍,但只要乌龟先跑,阿奇里斯就永远追不上。比如说乌龟先跑100米,当阿奇里斯跑完这100米时,乌龟已经在阿奇里斯前面10米;当阿奇里斯跑完这10米时,乌龟已经在阿奇里斯前面1米;当阿奇里斯跑完这1米时,乌龟已经在阿奇里斯前面0.1米……因此结论是,尽管阿奇里斯和乌龟之间的距离越来越短,但乌龟却永远在阿奇里斯前面。阿奇里斯永远追不上乌龟。

我记得最开始接触这个诡辩时被芝诺弄糊涂了,不知如何去驳斥,于是一气之下去计算阿奇里斯和乌龟跑200米所需要的时间,结果自然是阿奇里斯所用的时间更短,所以结论自然是阿奇里斯能追上乌龟。但同学泼冷水说,你算得是没错,但你能说明芝诺错在哪里么?可是那时我就是不能。再后来有了极限的概念,潜意识下就觉得驳斥之诺诡辩是小菜一碟(我想现在大部分人都是我这么想的吧),自此就不再将它当回事。也就是说,潜意识下我认为芝诺悖论已经解决了。

但真的解决了么?应行仁先生的这篇科普文章告诉我并非这么回事,就如同现在的数学中的直觉主义流派拒绝承认 1 = 0.9999999…… 一样。这是篇不错的科普文章,不同程度的读者读后估计都会有所裨益。

--------------------------------------------------------------------------

芝诺的阿基里斯与乌龟赛跑的故事很有名,在书刊网上多有介绍,有些娱乐节目还依此为题,但大多解答都不得要领,没有正面回应悖论的挑战。

芝诺(Zeno 490BC-435BC)生活在古希腊,比孔子略迟,比庄子要早。他的阿基里斯与乌龟的悖论说:跑得最快的阿基里斯永远追不上跑得慢的乌龟。因为他首先必 须跑到乌龟的起跑点,这时候乌龟已经往前爬了一段路。当他赶上这段路时,乌龟又向前进了一些。如此等等,无论什么时候阿基里斯追到了乌龟当前的位置,乌龟 在这段时间内又向前爬拉开了距离,这个差距虽然在缩小但一直存在,在这无穷追赶过程中不会是零。因此跑得慢的乌龟永远领先,无法被超越。

有的人嗤之以鼻,这是谬论!悖论本来指的就是推理的结论与常识相矛盾,却不能发现逻辑上的漏洞。同样似是而非的东西,如果一眼就能看得穿,不需要什么脑筋, 叫“胡搅蛮缠”。如果让人反复思考仍不得其解,那就上了档次,叫“悖论”。悖论的价值在于促进人们思考。它的解决往往带来的观念的突破和新的理论建立。

中学读物里把阿基里斯与乌龟的距离除这两者的速度差,算出了什么时候阿基里斯追上乌龟。这点算术知识芝诺同时代人也懂,但这不叫破解悖论。一个悖论有两个对立面,一边是常识,一边是推理。计算只是重申与推理相矛盾的常识是对的。矛盾依然存在。这时破解就要直接面对悖论的逻辑推理,而不是用其他途径的答案来说明推理的荒谬。

第一个企图解答是近百年后的亚里士多德(Aristotle 384 BC?322 BC),他解释:“认为在运动中领先的东西不能被追上这个想法是错误的。因为在它领先的时间内是不能被赶上的,但是,如果芝诺允许它能越过所规定的有限的 距离的话,那么它也是可以被赶上的。” 这句话只是作一个物理学的陈述,摇摆在当时两个冲突的无穷观念中,并没有正面回答芝诺提出的难题。

第二个是公元前212年阿基米德(Archimedes),他把每次追赶的路程相加起来计算阿基里斯和乌龟到底跑了多远。这问题归结为无穷级数求和的问题。他用个巧妙的方法算出等比级数的和。说明阿基里斯和乌龟的速度如果成比例的话,整个追赶过程是在有限的长度中。

在这种特例之外的情况,一直到了十九世纪柯西关于收敛性研究后才有了明确的答案。这结果是按照阿基米德的思路和收敛性研究的结果。结论是按照阿基里斯比乌龟快的条件,可能有两种结果。如果这个追赶的路程相加起来的无穷级数求和收敛,这个过程是在有限的长度中,否则不是有限的。在后者情况阿基里斯确实追不上乌龟。

可以编出一个不收敛的例子如下:乌龟领先阿基里斯1尺,当阿基里斯赶上这1尺时,乌龟又爬了1/2尺,阿基里斯赶上这1/2尺时,乌 龟又爬了1/3尺,阿基里斯赶上这1/n尺时,乌龟又爬了1/(n+1)尺,如此等等。阿基里斯确实比乌龟快,它们的距离每次都在缩短,但确实永远也追不 上。这个赋值的故事是调和级数求和,结果是无穷大。这时芝诺的推理与事实相符了,悖论成了佯谬,要纠正的是常识而不是推理。我们一般不再考虑这种情况了, 专注于有争议的收敛情况的解释。

到了这里,大家都觉得这个悖论已经被破解了。其实不然。阿基米德的思路确实是沿着芝诺追赶过程的逻辑走。 把这个过程描写成无穷级数求和的问题,给出整个追赶是在多长的范围内。芝诺的逻辑说这个差距在追赶的过程中永远存在,不会是零,所以不会被超越。对应着无穷级数求和是一个逼近的过程,它可以无限逼近它的极限值,但永远不会达到。因此阿基米德和现代级数收敛计算的结果只是给出了悖论常识一方可能被超越时的边界数值,而没有跨过这永远不会为零的间隙。

在收敛的情况下,阿基里斯事实上能够达到这个极限点从而超越,这与无穷级数求和只能无限逼近它的极限值仍然构成悖论矛盾的双方。

到底阿基里斯能不能追上乌龟,等价于这无穷级数求和能不能等于它的极限值。这就要涉及到数学上实无穷和潜无穷的哲学争论了。

实无穷认为无穷是可以达到的,当阿基里斯追上乌龟时便是这种情况,这时无穷级数的和等于它的极限值。潜无穷认为无穷是一个过程,不是实在的东西。在这个观点下,无穷级数求和只能不断逼近它的极限,而不是等于它。这个观点导致阿基里斯永远陷在追赶乌龟的过程中。

毕达哥拉斯学派主张1>0.9999... 是赞成潜无穷观点。用实无穷虽然可以解释许多结果,但是它的使用产生出很多问题,很多人并不支持。在他以后的亚里士多德倾向潜无穷但在阿基里斯与乌龟的问题上含糊其辞,这时大家对无穷都很头疼,以后的数学家从欧几里德开始,都尽量回避无穷的问题,专注于谈得清的有限问题。一直到牛顿和莱布尼茨的微积分,又采用了实无穷的概念,将导数表示为两个无穷小之比,积分为许多无穷小的加权和,得出丰硕的成果。实无穷的思想回潮和滥用,又产生了很多问题和混乱,以致贝克莱把这些矛盾组合成悖论来反对微积分,导致数学第二次危机。到了魏尔斯特拉斯,他驱逐了实无穷,由潜无穷的概念发展出严谨的极限概念,重铸分析的基础。百多年后,康托尔又在集合论中将实无穷请回来。在20世纪60年 代,鲁滨逊又把无穷小量请了回来,从而建立了非标准分析。数学的直觉主义学派如今仍然反对实无穷。以致希尔伯特感叹说:“无穷是一个永恒的谜!”

芝诺的阿基里斯与乌龟的悖论的破解,经过两千多年兜了一圈又回到实无穷与潜无穷的争论中去。今日人们实用主义地在不同场合分别使用这两种概念。这当然是一种 未澄清的矛盾状态。到现在,中外数学,物理和哲学期刊里还不时有着讨论实无穷,潜无穷及芝诺悖论的论文。争论仍然没有结束。

【后记】(写于15个评论,点击1100时)

很高兴见到许多跟帖,可惜到现在为止几乎所有的跟帖都没有认真跟随文中的逻辑而急于给出自己的反应。这个悖论的重点是阿基里斯无法在逻辑上超越乌龟而不是在 实际上。这也许因为“芝诺的阿基里斯与乌龟的悖论”太有名了,书刊里充满了许多浅薄的答案。或者大家基于教科书里关于极限的知识。几千年来不少数学家都思 考过这个问题,带来不同程度的进展,大家也许从来没有想过初等微积分教科书中实无穷假设的理由和困境。而各种文库、百科、科普给出的都是不同程度似是而非 的答案。这个有点深度的科普目的是引导大家思考这些困扰着数学大师和哲人难题答案的历史变迁和现状。实无穷和潜无穷是哲学上的观念,在数学上实无穷认为它 是个具体的数学个体,如无穷集合,无理数等。潜无穷不愿意把涉及到无穷极限或总体当作是一个数学实体,只承认它是个有限不断逼近的过程。

关于这个悖论本质的认真讨论,较好中文的论文我只找到南京大学现代逻辑与逻辑应用研究所杜国平的文章,有兴趣可以参考。注意这是介绍历史和哲学的论文,不是数学的,其定义和推理也是非数学的。

【1】杜国平 “潜无穷、实无穷探析”《自然辩证法通讯》2009年第3期 http://wenku.baidu.com/view/7634344be45c3b3567ec8b58.html

【后记】(写于26个评论,点击1828时)

看了后续的评论,这次深入了许多。我想再说明几点:芝诺有许多悖论涉及到无穷、分割、速度和运动等概念,它们之间有些是关联的,但不全是一样。几千年来人们 思考这些悖论的进步部分地解答了一方面的困惑,但有些悖论,比如这一个,仍然不断被征服过后又屹立在那儿。这一个悖论的要点不在时间、空间、可分性方面, 虽然这也是一些人的困惑。但那在他的其他悖论里更突出,其结果带来了物理学上的进步。而这个悖论的矛盾在于纯粹数学观念上:收敛的级数是不是和它的极限同 一回事?如果是,为什么?这在最初毕达哥拉斯学派主张1>0.9999... 就争论过。承认是,又有许多新的矛盾。承认不是,又无法跨越这个间隙。所以教科书就含糊了,以免让学生困惑。现代数学和科学的基础并不像局外人想象的那样 坚固,但科学是在不断思考和解决矛盾中发展。从事科学的人多用头脑来思索逻辑比起从书本中翻出答案更有益于做研究。

关于芝诺的许多悖论,斯坦福百科比国内许多刊物更专业一点。注意,他只是把矛盾解释清楚,并没有雄心给出答案。http://plato.stanford.edu/entries/paradox-zeno/

浏览(5302)
thumb_up(13)
评论(224)
  • 当前共有224条评论
  • 紫荆棘鸟 回复 溪谷闲人
    那行,请你别跟帖了。你如果意犹未尽,请自己开主帖。我希望有些真知灼见的人别因为看到这些帖而止步。
    屏蔽 举报回复
  • 溪谷闲人
    我的回帖没有拷贝滴,冤枉啊,陛下
    屏蔽 举报回复
  • 紫荆棘鸟 回复 芨芨草
    因为溪谷闲人贡献了差不多一半的帖,我都想将这些帖子删除。都哪跟哪去了。
    屏蔽 举报回复
  • 紫荆棘鸟 回复 溪谷闲人
    你如果这里拷贝一段那里拷贝一段,请你自己开主帖,别在这里东拉西扯。拜托了。
    屏蔽 举报回复
  • 溪谷闲人
    傅立叶变换为何如此重要,举个例子就明白。到了数字电路时代,半导体风靡世界,数字脉冲、各种奇异波形出现,什么方波、脉冲前沿、脉冲后滞等等,用傅立叶变换,可以用正弦波无限地逼近各种奇异波形,使它们达到任意精度的可计算成度。这一来,一切问题都不在话下。就是说,不怕无限,就怕逼近。
    屏蔽 举报回复
  • 溪谷闲人
    所以你有点儿灵气,抓得住最主要、最核心的东西,这从你的博文里,能看出来。不过你有点儿“只见贼吃肉,不见贼挨打”。中国人的普遍毛病。急于求成。所谓“成”,不是求出来滴。中国整个国家就这个德行,好不了。再说,成不成滴,也没个标准,那些自以为自己成了的家伙,SB居多。
    屏蔽 举报回复
  • 嘎拉哈 回复 溪谷闲人
    <p>[比如科西收敛,科西最著名的不是什么科西收敛,而是科西变换。科西变换与傅立叶变换、拉普拉斯变换一起,合称三大变换,是数学物理方程的基础。要说收敛,最著名的是傅立叶级数收敛,那是电工学、无线电学最重要的基础,离开了傅立叶变换,整个无线电学就要瘫痪。]</p><p>----- 俺上小学的时候,就读过科东的《联邦党人文集》、傅立叶的《常识》等著作,也喜欢了解拉普拉斯、欧拉、罗斯福等美国数学家的生平和思想。。。”</p>
    屏蔽 举报回复
  • 溪谷闲人
    芨草,要说有悖论,也算是。我说先有鸡,嘎博非要说先有蛋,你说扯淡不扯淡?
    屏蔽 举报回复
  • 溪谷闲人
    不过嘎博到底是数得上的理论家,所以,孺子可教也。要不然,我费这么大劲干嘛?难道是吃饱了撑滴?
    屏蔽 举报回复
  • 溪谷闲人
    比如科西收敛,科西最著名的不是什么科西收敛,而是科西变换。科西变换与傅立叶变换、拉普拉斯变换一起,合称三大变换,是数学物理方程的基础。要说收敛,最著名的是傅立叶级数收敛,那是电工学、无线电学最重要的基础,离开了傅立叶变换,整个无线电学就要瘫痪。
    屏蔽 举报回复