又见兔子

作者:零加一中
发表时间:
+-

定义:

integration.png

question.png

We first introduce Fibonacci numbers.

f(0) = f(1) = 1,

f(n) = f(n-1) + f(n-2), n ≥ 2.

In integral I(n), let x = y*y. It is not hard to prove that the integrand is

2y {[f(n-1) + f(n-2)y]/[f(n) + f(n-1)y]} ≡ 2y g(n, y).

We will omit y inside g(n, y) as g(n).

Fibonacci number f(n) has the asymptotic  form sqrt(5)/x0^n where x0 is the Golden Ratio 0.618… Using this asymptotic  form, after simplification,

g(n) ≈ x0

I(n) ≈ x0 = [sqrt(5) – 1]/2.


  • 当前共有2条跟帖
  • iwww:专业外汇、黄金、白银等金融产品交易操盘手!免费指导!先盈利后收费!微信号:alex19992009
    专业外汇、黄金、白银等金融产品交易操盘手!免费指导!先盈利后收费!微信号:alex19992009
    屏蔽 举报回复
  • zhf:思路新颖
    屏蔽 举报回复